

Human Lactoferrin ELISA Kit

Vertrieb:

LOXOGmbH Immunbiologie Biochemie, Produkte und Systeme Postfach 11 30 69215 Dossenheim Telefon +49 (0) 62 21 - 86 80 23 FAX +49 (0) 62 21 - 86 80 255 E-Mail: info@loxo.de Internet: www.loxo.de

> Assaypro LLC 30 Triad South Drive St. Charles, MO 63304 T (636) 447-9175 F (636) 447-9475

www.assaypro.com

Hinweis/Note:

Der Packungsbeileger dient nur als erste Information. Der relevante Packungsbeileger liegt der Ware bei.

The datasheet is only a first information. The relevant datasheet is included with the product.

For any questions regarding troubleshooting or performing the assay, please contact our support team at support@assaypro.com.

Thank you for choosing Assaypro.

Assay Summary

Step 1. Add 50 μ l of Standard or Sample per well. Incubate 2 hours.

Step 2. Wash, then add 50 μ l of Biotinylated Antibody per well. Incubate 1 hour.

Step 3. Wash, then add 50 μ l of SP Conjugate per well. Incubate 30 minutes.

Step 4. Wash, then add 50 μ l of Chromogen Substrate per well. Incubate 15 minutes.

Step 5. Add 50 μ l of Stop Solution per well. Read at 450 nm immediately.

Symbol Key

Consult instructions for use.

Assay Template

12								
11								
10								
6								
∞								
2								
9								
ъ								
4								
m								
2								
1								
	٨	В	С	۵	Э	4	9	т

AssayMax Human Lactoferrin ELISA Kit

Catalog No. EL2011-1 Sample Insert/Reference Only

Introduction

Lactoferrin is an 80 kDa iron-binding glycoprotein produced by many exocrine glands with a major constituent in the secondary granules of neutrophilic leukocytes. Serum lactoferrin concentration is much higher during inflammation (1). Lactoferrin is known to be an immune modulator or enhancer due to specific receptors for lactoferrin that are found on many key immune cells such as lymphocytes, monocytes, and macrophages. Lactoferrin is known to be directly involved in the up-regulation of natural killer (NK) cell activity (2). Lactoferrin is present in maternal milk, saliva, tears, vaginal secretions, semen, bronchoalveolar lavage fluid, and specific granules of polymorphonuclear leukocytes (PMNs) (3). Lactoferrin is found mainly in the oral cavity where it can come into direct contact with pathogens such as viruses, bacteria, etc. Lactoferrin directly inhibits viruses by binding to viral receptor sites, thus preventing the virus from infecting healthy cells. Lactoferrin has a direct bactericidal function to certain bacteria such as Streptococcus mutans, Vibrio cholerae, Escherichia coli, Actinobacillus actinomycetemcomitans, and Legionella pneumophila (2-4). Also, it has a bacteriostatic effect that deprives iron-requiring bacteria of this essential growth nutrient (4). Lactoferrin is also considered an antioxidant that scavenges free iron, helping to prevent uncontrolled iron based free radical reactions, thus protecting certain cells from peroxidation (2).

Principle of the Assay

The AssayMax Human Lactoferrin ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for detection of human lactoferrin in **plasma, serum**, **urine, saliva, milk, CSF, and cell culture samples**. This assay employs a quantitative **sandwich enzyme immunoassay** technique, which measures lactoferrin in less than 4 hours. A polyclonal antibody specific for lactoferrin has been pre-coated onto a 96-well microplate with removable strips. Lactoferrin in standards and samples is sandwiched by the immobilized antibody and a biotinylated polyclonal antibody specific for lactoferrin, which is recognized by a streptavidin-peroxidase conjugate. All unbound material is then washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured.

Caution and Warning

- Prepare all reagents (working diluent buffer, wash buffer, standard, biotinylated antibody, and SP conjugate) as instructed, prior to running the assay.
- Prepare all samples prior to running the assay. The dilution factors for the samples are suggested in this protocol. However, the user should determine the optimal dilution factor.
- Spin down the SP conjugate vial and the biotinylated antibody vial before opening and using contents.
- The Stop Solution is an acidic solution.
- This kit is for research use only.
- The kit should not be used beyond the expiration date.

Reagents

- **Human Lactoferrin Microplate:** A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against human lactoferrin.
- **Sealing Tapes:** Each kit contains 3 precut, pressure sensitive sealing tapes that can be cut to fit the format of the individual assay.
- **Human Lactoferrin Standard:** Human lactoferrin in a buffered protein base (48 ng, lyophilized).
- **Biotinylated Human Lactoferrin Antibody (50x):** A 50-fold concentrated biotinylated polyclonal antibody against human lactoferrin (140 µl).
- **MIX Diluent Concentrate (10x)**: A 10-fold concentrated buffered protein base (30 ml).
- Wash Buffer Concentrate (20x): A 20-fold concentrated buffered surfactant (30 ml, 2 bottles).
- Streptavidin-Peroxidase Conjugate (SP Conjugate): A 100-fold concentrate (80 μl).
- **Chromogen Substrate**: A ready-to-use stabilized peroxidase chromogen substrate tetramethylbenzidine (8 ml).
- **Stop Solution**: A 0.5 N hydrochloric acid to stop the chromogen substrate reaction (12 ml).

Storage Condition

- Upon arrival, immediately store components of the kit at recommended temperatures up to the expiration date.
- Store SP Conjugate and Biotinylated Antibody at -20°C.
- Store Microplate, Diluent Concentrate (10x), Wash Buffer, Stop Solution, and Chromogen Substrate at 2-8°C.

- Unused microplate wells may be returned to the foil pouch with the desiccant packs and resealed. May be stored for up to 30 days in a vacuum desiccator.
- Diluent (1x) may be stored for up to 30 days at 2-8°C.
- Store Standard at 2-8°C before reconstituting with Diluent and at -20°C after reconstituting with Diluent.

Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm.
- Pipettes (1-20 μl, 20-200 μl, 200-1000 μl, and multiple channel).
- Deionized or distilled reagent grade water.

Sample Collection, Preparation and Storage

- **Plasma:** Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3000 x g for 10 minutes. Dilute samples 1:50 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles (EDTA or Heparin can also be used as an anticoagulant).
- Serum: Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3000 x g for 10 minutes, and remove serum. Dilute samples 1:50 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- **Cell Culture Supernatants:** Centrifuge cell culture media at 3000 x g for 10 minutes to remove debris. Collect supernatants and assay. Store the remaining samples at -20°C or below. Avoid repeated freeze-thaw cycles.
- Urine: Collect urine using sample pot. Centrifuge samples at 800 x g for 10 minutes and assay. If necessary, dilute samples within the range of 1:2 to 1:10 into MIX Diluent, and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Saliva: Collect saliva to sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:1000 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Milk: Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:100000 into MIX Diluent and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- **CSF:** Collect cerebrospinal fluid (CSF) using sample pot. Centrifuge samples at 3000 x g for 10 minutes. Dilute samples 1:10 into MIX Diluent

and assay. The undiluted samples can be stored at -80°C for up to 3 months. Avoid repeated freeze-thaw cycles.

	Guidelines for Dilutions of 1:100 or Greater (for reference only; please follow the protocol for specific dilution suggested)			
1:100			1:10000	
A)	4 ul sample: 396 μl buffer = 100 fold dilution Assuming the needed volume is less than or equal to 400 μl.	A) $4 \mu l$ sample : 396 μl buffer (100x) B) $4 \mu l$ of A : 396 μl buffer (100x) = 10000 fold dilution <i>than</i> Assuming the needed volume is less that or equal to 400 μl .		
	1:1000		1:100000	
A) B)	4 μl sample : 396 μl buffer (100x) 24 μl of A : 216 μl buffer (10x) = 1000 fold dilution Assuming the needed volume is less than or equal to 240 μl.	A) B) C)	4 μl sample : 396 μl buffer (100x) 4 μl of A : 396 μl buffer (100x) 24 μl of B : 216 μl buffer (10x) = 100000 fold dilution Assuming the needed volume is less than or equal to 240 μl.	

Refer to Sample Dilution Guidelines below for further instruction.

Reagent Preparation

- Freshly dilute all reagents and bring all reagents to room temperature before use.
- MIX Diluent Concentrate (10x): If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved. Dilute the MIX Diluent Concentrate 1:10 with reagent grade water. Store for up to 30 days at 2-8°C.
- Standard Curve: Reconstitute the 48 ng of Human Lactoferrin Standard with 1.2 ml of MIX Diluent to generate a 40 ng/ml standard solution. Allow the standard to sit for 10 minutes with gentle agitation prior to making dilutions. Prepare duplicate or triplicate points by serially diluting the standard (40 ng/ml) 1:2 using equal volume of MIX Diluent to produce 20, 10, 5, 2.5, 1.25, and 0.625 ng/ml solutions. MIX Diluent serves as the zero standard (0 ng/ml). Any remaining solution should be frozen at -20°C and used within 30 days.

Standard Point	Dilution	[Lactoferrin] (ng/ml)
P1	Standard (40 ng/ml)	40.00
P2	1 part P1 + 1 part MIX Diluent	20.00
P3	1 part P2 + 1 part MIX Diluent	10.00
P4	1 part P3 + 1 part MIX Diluent	5.000
P5	1 part P4 + 1 part MIX Diluent	2.500
P6	1 part P5 + 1 part MIX Diluent	1.250
P7	1 part P6 + 1 part MIX Diluent	0.625
P8	MIX Diluent	0.000

- **Biotinylated Human Lactoferrin Antibody (50x):** Spin down the antibody briefly and dilute the desired amount of the antibody 1:50 with MIX Diluent. Any remaining solution should be frozen at -20°C.
- Wash Buffer Concentrate (20x): If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved. Dilute the Wash Buffer Concentrate 1:20 with reagent grade water.
- **SP Conjugate (100x):** Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 1:100 with MIX Diluent. Any remaining solution should be frozen at -20°C.

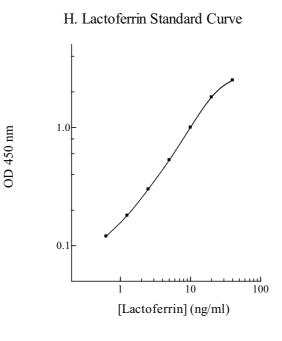
Assay Procedure

- Prepare all reagents, standard solutions, and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature (20-25°C).
- Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccants inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.
- Add 50 μ l of Human Lactoferrin Standard or sample per well. Cover wells with a sealing tape and incubate for 2 hours. Start the timer after the last addition.
- Wash five times with 200 µl of Wash Buffer manually. Invert the plate each time and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If using a machine, wash six times with 300 µl of Wash Buffer and then invert the plate, decanting the contents; hit 4-5 times on absorbent material to completely remove the liquid.
- Add 50 μl of Biotinylated Human Lactoferrin Antibody to each well and incubate for 1 hour.
- Wash the microplate as described above.
- Add 50 μl of Streptavidin-Peroxidase Conjugate per well and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.

- Wash the microplate as described above.
- Add 50 µl of Chromogen Substrate per well and incubate for 15 minutes or till the optimal blue color density develops. Gently tap the plate to ensure thorough mixing and break the bubbles in the well with pipette tip.
- Add 50 μl of Stop Solution to each well. The color will change from blue to yellow.
- Read the absorbance on a microplate reader at a wavelength of 450 nm **immediately**. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.

Data Analysis

- Calculate the mean value of the duplicate or triplicate readings for each standard and sample.
- To generate a standard curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit.
- Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.


Typical Data

• The typical data is provided for reference only. Individual laboratory means may vary from the values listed. Variations between laboratories may be caused by technique differences.

Standard Point	ng/ml	OD	Average OD
P1	40.00	2.188	2.138
Γ⊥	40.00	2.089	2.130
P2	20.00	1.839	1.756
ΓZ	20.00	1.674	1.750
Р3	10.00	1.315	1.284
гJ	10.00	1.253	1.204
P4	5.000	0.806	0.787
Г4	0.768	0.768	0.787
Р5	2.500 0.476 0.489	0.476	0.482
гJ		0.489	0.402
P6	1.250	0.225	0.212
10	1.230	0.199	0.212
Р7	0.625	0.141	0.140
	0.025	0.139	0.140
P8	0.000	0.053	0.050
F8 0.000		0.048	0.030
Sample: Po	ol Normal,	0.767	0.720
Sodium Citrate	e Plasma (50x)	0.705	0.736

Standard Curve

• The curve is provided for illustration only. A standard curve should be generated each time the assay is performed.

Reference Value

• Normal human lactoferrin plasma levels range from 150 to 850 ng/ml.

• Human Plasma and Serum samples from healthy adults were tested (n=40). On average, lactoferrin level was 345 ng/ml.

Sample	n	Average Value (ng/ml)
Human Pool Normal Plasma	10	349
Human Normal Plasma	20	299
Human Pool Normal Serum	10	388

Performance Characteristics

- The minimum detectable dose of lactoferrin as calculated by 2SD from the mean of a zero standard was established to be 0.52 ng/ml.
- Intra-assay precision was determined by testing replicates of three plasma samples in one assay.
- Inter-assay precision was determined by testing three plasma samples in twenty assays.

	Intra-Assay Precision			Inter	-Assay Prec	sision
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
CV (%)	3.3%	5.0%	4.6%	9.5%	9.1%	9.8%
Average CV (%)	4.3%				9.5%	

Spiking Recovery

• Recovery was determined by spiking two plasma samples with different lactoferrin concentrations.

Sample	Unspiked Sample (ng/ml)	Spike (ng/ml)	Expected	Observed	Recovery (%)
		10.0	12.0	12.5	104%
1	2.0	5.0	7.0	8.1	116%
		2.5	4.5	4.8%	107%
		10.0	15.0	13.2	88%
2	5.0	5.0	10.0	10.3	103%
		2.5	7.5	7.2	96%
Average Recovery (%)					102%

Linearity

• Plasma and serum samples were serially-diluted to test for linearity.

	Average Percentage of Expected Value		
Sample Dilution	Plasma	Serum	
1:25	92%	89%	
1:50	99%	98%	
1:100	105%	104%	

Cross-Reactivity

Species	% Cross Reactivity
Canine	None
Bovine	None
Monkey	10%
Mouse	None
Rat	None
Swine	None
Rabbit	None

Troubleshooting

Issue	Causes	Course of Action
	Use of expired components	 Check the expiration date listed before use. Do not interchange components from different lots.
F	Improper wash step	 Check that the correct wash buffer is being used. Check that all wells are dry after aspiration. Check that the microplate washer is dispensing properly. If washing by pipette, check for proper pipetting technique.
cisio	Splashing of reagents while loading wells Inconsistent volumes loaded into wells	 Pipette properly in a controlled and careful manner.
Low Precision		 Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance.
	Insufficient mixing of reagent dilutions	 Thoroughly agitate the Standard and Fluorescent Probe after reconstitution. Thoroughly mix dilutions.
	Improperly sealed microplate	 Check the microplate pouch for proper sealing. Check that the microplate pouch has no punctures. Check that three desiccants are inside the microplate pouch prior to sealing.

	Microplate was left unattended between steps	 Each step of the procedure should be performed uninterrupted.
5 2	Omission of step	 Consult the provided procedure for complete list of steps.
ow o ensity	Steps performed in incorrect order	 Consult the provided procedure for the correct order.
y L nte	Insufficient amount of	 Check pipette calibration.
Jnexpectedly Low or High Signal Intensity	reagents added to wells	 Check pipette for proper performance.
Sig	Wash step was skipped	 Consult the provided procedure for all wash steps.
Sh ex	Improper wash buffer	 Check that the correct wash buffer is being used.
Un Hig	Improper reagent preparation	 Consult reagent preparation section for the correct dilutions of all reagents.
	Insufficient or prolonged incubation periods	 Consult the provided procedure for correct incubation time.
Deficient Standard Curve Fit	Non-optimal sample dilution	 Sandwich ELISA: If samples generate OD values higher than the highest standard point (P1), dilute samples further and repeat the assay. Competitive ELISA: If samples generate OD values lower than the highest standard point (P1), dilute samples further and repeat the assay. User should determine the optimal dilution factor for samples.
anda	Contamination of reagents	 A new tip must be used for each addition of different samples or reagents during the assay procedure.
nt St	Contents of wells evaporate	 Verify that the aluminum sealing film is firmly in place before placing the assay in the incubator.
Deficie	Improper pipetting	 Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance.
	Insufficient mixing of reagent dilutions	 Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions.

References

- (1) Naot, D. et al. (2005) Clinical Medicine & Research. Vol 3, No. 2: 93-101
- (2) Brink, W. (October 2000) LE Magazine.
- (3) Yamauchi, K. et al (1993) Infection and Immunity. Vol 61, No 2, p.719-728
- (4) Conneely, O. M. (2001) J. of the Am. Col. of Nutrition. Vol. 20, No. 5, 389S-395S

Version 4.5